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Multi-branched flames are commonly found in unsteady combustors.

They especially can appear with the extinction/ re-ignition behavior in
vorticity-dominated flows with time-varying rates of strain S.

Flamelet theory provides a useful model with reduced computational
cost for multidimensional combustor analysis via CFD.

Flamelet theory Is based on counterflow similarity solutions in planar
or axisymmetric configurations. Peters (2000), Pierce & Moin (2004)

The theory has been developed only for single nonpremixed or
premixed flames.

Here, we extend the flamelet theory to three-dimensional
configurations with multiple (one, two, or three) flames.



Governing Equations for 3D Reacting Counterflow
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Similarity form

p =p(n) ; h=h(y) ; Y = Yn(n)
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ODEs In Similarity Analysis

Perfect gas , constant specific heats
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One-step Westbrook-Dryer Kinetics for propane and oxygen
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Tambient — 300 K.

Reference Values: Strain Rate S* =S1* + S2* = 100/s
Ambient Density p* = 10 kg/m?3

Da = K Da,
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Conserved Scalars

Y —= YF—VYO 6 — }'l_{_UYOQ UV = 0275

First case

A fuel-lean mixture flows from left to right.

A fuel-rich mixture flows from right to left.

5;=025; S, =0.75 ; Pr=Sc=10 ; K given in Legend
Monotonic behavior, little effect of strain distribution
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5:=0.25; S5, =0.75 ; Pr=5c=1.0

-- Three flames can appear; fuel-lean premixed flame on left, diffusion flame in
the middle, and fuel-rich premixed flame on right.

-- Increase in strain rate and/or decrease In pressure causes fuel-rich premixed
flame to merge into diffusion flame.

-- Further increase In strain rate or decrease in pressure causes fuel-lean flame to
merge with diffusion flame and then extinction with further change.
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$,=025;S,=075 ; Pr=Sc=1.0

-- Adomain with no fuel but substantial oxygen exists between the fuel-lean premixed flame
and the diffusion flame.

-- Adomain with no oxygen but substantial fuel exists between the fuel-rich premixed flame
and the diffusion flame.

-- The diffusion flame sits in the fuel-lean stream.

-- Merger and extinction are again shown with increasing strain rate and decreasing pressure.
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5;=025; S, =0.75 ; Pr=35c=1.0

-- In counterflows, the fluid in both streams is accelerates in the transverse directions
away from the two symmetry planes. op/ox~-X ;, Op/Oz~-7 ; U~X ;, W~Z.

-- The flames result in domains of high temperature and low density which have greater
acceleration due to the pressure gradient.

-- Overshoot of the transverse velocity occurs with greater velocities in the direction with
greater normal strain rate.
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5;=025; S, =0.75 ; Pr=35c=1.0

Contrary to impressions given in the literature,
the velocity v in the counterflow direction is far
from linear (or even monotonic) in'y.

There can be local maxima and minima in both
The velocity v and the normal strain rate dv/ oy .
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Fuel-lean Mixture
Flowing Against Fuel
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-- Here, results are presented for pure fuel flowing
from the right counter to a fuel-lean combustible

mixture from the left.
-- Only a fuel-lean premixed flame and a diffusion

flame can occur.

-- Merging and extinction can follow as before with

decreasing K value.

-- Strain rate distribution has little effect on scalar
Properties; 3D, axisymmetric, and planar results are close.
-- Prandtl number has a more significant effect.
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A new conserved scalar 2 must replace mixture fraction Z . It need not be
physically meaningful but only monotonic in the y coordinate.
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-- 2 1s always a monotonic function of y or »# while Z based on molecular species
Is not for multi-flame configuration. Z based on atomic species need not be
monotonic in y for the unsteady state.

-- For the simple steady-state diffusion-flame-only case, 2 = Z.

-- At high Da or K values, n +1 linear segments appear for scalar variables

versus 2 where n 1s the number of flames.
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-- Consistent results with h behavior are found for fuel and oxygen mass fractions.

-- The scalar dissipation y is non-zero only in non-linear regions and especially large
In the “corner” regions.
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Conclusions

-- Flamelet theory has been extended to three dimensions and to multi-flame configurations.

-- A formalism has been established unifying various reacting counterflows:

a single diffusion flame, a single premixed flame, a two-flame situation with a
combustible mixture flowing in one direction, and a three-flame situation with
combustible mixtures flowing in both directions.

-- Density variations due to combustion result in previously unidentified but
substantial velocity overshoots, nonlinear variation in counterflow velocity,
and variation in normal strain rate.

-- The dependence of multiple-flame existence, flame merging, and extinction
on pressure, imposed strain rate, distribution of strain rate, and Prandtl number
has been established.



Conclusions continued

-- A generalized variable 2 to replace mixture fraction and a new
generalized scalar dissipation rate have been identified.

-- Extensions of this flamelet theory for detailed kinetics, detailed transport,
and real-fluid equations of state are needed.

-- A basis has been provided for development of sub-grid models for LES
using the multi-flamelet approach.

-- A basis has been provided for further exploration of multi-branched flames
In highly strained, three-dimensional flows.



Thank you.



Single Diffusion Flame
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Single Premixed Flame
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Fuel-rich Mixture flowing against Oxygen
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